

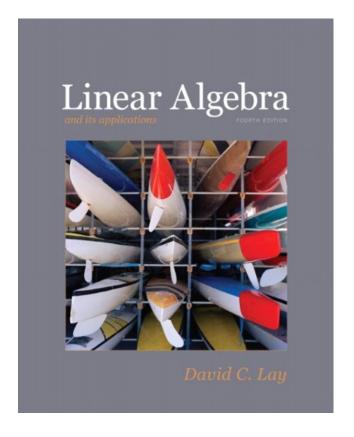
Tema 3: Álgebra matricial

Curso 2016/2017

Índice de contenidos

- Operaciones matriciales
- Inversa de una matriz
- Matrices elementales
- Un algoritmo para invertir matrices
- Caracterización de las matrices invertibles
- Transformaciones lineales invertibles
- Matrices particionadas
- Factorización LU
- Una aplicación para gráficos por ordenador y procesamiento de imágenes
- Subespacios de \mathbb{R}^n
- Dimensión y rango

Referencias



Lay D. Linear algebra and its applications (4th ed). Chapter 2.

Índice de contenidos

- Operaciones matriciales
- Inversa de una matriz
- Matrices elementales
- Un algoritmo para invertir matrices
- Caracterización de las matrices invertibles
- Transformaciones lineales invertibles
- Matrices particionadas
- Factorización LU
- Una aplicación para gráficos por ordenador y procesamiento de imágenes
- Subespacios de \mathbb{R}^n
- Dimensión y rango

Definición: Matriz

Informalmente, se puede definir una matriz como un arreglo regular de números dispuestos en una cuadrícula de m filas y n columnas. Más formalmente, decimos que $A \in \mathcal{M}_{m \times n}$.

Denotamos como \mathbf{a}_{j} a la columna que ocupa la posición j, y \mathbf{a}_{ij} al elemento que ocupa la fila i y la columna j.

$$A = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_n \end{bmatrix}$$

Ejemplo

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$$

Octave: A = [123; 456]

Definición: Matriz

La diagonal principal es el vector compuesto por los elementos \mathbf{a}_{ij} , tales que i = j $(\mathbf{a}_{11}, \mathbf{a}_{22},...)$.

Existen dos matrices especiales, que son:

- Matriz identidad: denotada como $I \in \mathcal{M}_{n \times n}$, que tiene todos ceros menos la diagonal principal, cuyos valores son todos 1
- Matriz cero: denotada como $0 \in \mathcal{M}_{m \times n}$, cuyos elementos son todos 0

$$I_1 = (1), \ I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \ I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \ \cdots, \ I_n = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}$$

Definición: Suma con un escalar

El operador suma entre un escalar y una matriz se define como:

$$+: \mathbb{R} \times \mathcal{M}_{m \times n} \rightarrow \mathcal{M}_{m \times n} \\ +(k, A) \rightarrow B = k + A \mid b_{ij} = k + a_{ij}$$

Sobrecargando la notación, el **operador suma** entre una matriz y un escalar se define como:

$$+: \mathcal{M}_{m \times n} \times \mathbb{R} \to \mathcal{M}_{m \times n} +(A, k) \to B = A + k \mid b_{ij} = a_{ij} + k$$

Propiedades

$$k + A = A + k$$

 $(k_1 + k_2) + A = k_1 + (k_2 + A)$

Ejemplo

$$A = \begin{pmatrix} 1 & 2 & 3 \\ -1 & -2 & -3 \end{pmatrix}$$
$$B = 1 + A = \begin{pmatrix} 2 & 3 & 4 \\ 0 & -1 & -2 \end{pmatrix}$$

Octave: B = 1 + A

Definición: Multiplicación por un escalar

El operador multiplicación entre un escalar y una matriz se define como:

Sobrecargando la notación, el **operador multiplicación** entre una matriz y un **escalar** se define como:

Propiedades

$$kA = A k$$

 $(k_1 k_2) A = k_1 (k_2 A)$
 $(k_1 + k_2) A = k_1 A + k_2 A$

Ejemplo

$$A = \begin{pmatrix} 1 & 2 & 3 \\ -1 & -2 & -3 \end{pmatrix}$$
$$B = 2A = \begin{pmatrix} 2 & 4 & 6 \\ -2 & -4 & -6 \end{pmatrix}$$

Octave: B = 2 * A

Definición: Suma de dos matrices

El operador suma entre dos matrices se define como:

$$+: \mathcal{M}_{m \times n} \times \mathcal{M}_{m \times n} \rightarrow \mathcal{M}_{m \times n} +(A, B) \rightarrow C = A + B \mid c_{ij} = a_{ij} + b_{ij}$$

Propiedades

$$A + B = B + A$$

$$A + (B + C) = (A + B) + C$$

$$A + 0 = A$$

$$k(A + B) = kA + kB$$

Ejemplo

$$A = \begin{pmatrix} 1 & 2 & 3 \\ -1 & -2 & -3 \end{pmatrix}$$

$$B = \begin{pmatrix} 4 & 5 & 6 \\ 0 & 1 & 1 \end{pmatrix}$$

$$C = A + B = \begin{pmatrix} 5 & 7 & 9 \\ -1 & -1 & -2 \end{pmatrix}$$

Octave: C = A + B

Demostración de las propiedades

No vamos a demostrar todas las propiedades, aunque todas ellas seguirían la misma estrategia mostrada a continuación. Por ejemplo:

$$k(A + B) = kA + kB$$

Demostración:

Desarrollamos la parte izquierda de la igualdad:

$$C = A + B$$
 | $c_{ij} = a_{ij} + b_{ij}$
 $D = kC = k(A + B)$ | $d_{ij} = kc_{ij} = k(a_{ij} + b_{ij}) = ka_{ij} + kb_{ij}$

Ahora, por el lado derecho de la igualdad tenemos:

$$E = kA \quad | \quad e_{ij} = ka_{ij}$$

$$F = kB \quad | \quad f_{ij} = kb_{ij}$$

$$G = E + F = kA + kB \quad | \quad g_{ij} = e_{ij} + f_{ij} = ka_{ij} + kb_{ij}$$

Es obvio que $d_{ij} = g_{ij}$, y por lo tanto k(A + B) = kA + kB

Definición: Multiplicación de dos matrices

El operador multiplicación entre dos matrices se define como:

$$\cdot : \mathcal{M}_{m \times n} \times \mathcal{M}_{n \times p} \to \mathcal{M}_{m \times p}$$

$$\cdot (A, B) \to C = AB \mid c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

Si consideramos las diferentes columnas de *B*, tenemos:

$$B = (\mathbf{b}_1 \ \mathbf{b}_2 \ \dots \ \mathbf{b}_p) \Rightarrow AB = (A\mathbf{b}_1 \ A\mathbf{b}_2 \ \dots \ A\mathbf{b}_p)$$

Esto puede ser interpretado como que "la *j-ésima* columna de *AB* es la suma ponderada o combinación lineal de las columnas de la matriz *A*, usando los pesos definidos por la *j-ésima* columna de *B*"

Ejemplo

Octave: A * B

Ejemplo

Sea
$$A = \begin{pmatrix} 2 & 3 \\ 1 & -5 \end{pmatrix}$$
 y $B = \begin{pmatrix} 4 & 3 & 6 \\ 1 & -2 & 3 \end{pmatrix}$. Entonces:

Ejemplo

Sea
$$A = \begin{pmatrix} 2 & 3 \\ 1 & -5 \end{pmatrix}$$
 y $B = \begin{pmatrix} 4 & 3 & 6 \\ 1 & -2 & 3 \end{pmatrix}$. Entonces:

$$A\mathbf{b}_{1} = \begin{bmatrix} 2 & 3 \\ 1 & -5 \end{bmatrix} \begin{bmatrix} 4 \\ 1 \end{bmatrix}, \quad A\mathbf{b}_{2} = \begin{bmatrix} 2 & 3 \\ 1 & -5 \end{bmatrix} \begin{bmatrix} 3 \\ -2 \end{bmatrix}, \quad A\mathbf{b}_{3} = \begin{bmatrix} 2 & 3 \\ 1 & -5 \end{bmatrix} \begin{bmatrix} 6 \\ 3 \end{bmatrix}$$

$$= \begin{bmatrix} 11 \\ -1 \end{bmatrix} \qquad = \begin{bmatrix} 0 \\ 13 \end{bmatrix} \qquad = \begin{bmatrix} 21 \\ -9 \end{bmatrix}$$

$$AB = A[\mathbf{b}_{1} \ \mathbf{b}_{2} \ \mathbf{b}_{3}] = \begin{bmatrix} 11 & 0 & 21 \\ -1 & 13 & -9 \end{bmatrix}$$

De esta forma, para calcular directamente una entrada específica de AB, por ejemplo $(AB)_{23}$, tenemos que multiplicar la 2^a fila de A y la 3^a columna de B

$$(AB)_{23} = \begin{bmatrix} 2 & 3 \\ 1 & -5 \end{bmatrix} \begin{pmatrix} 4 & 3 & 6 \\ 1 & -2 & 3 \end{bmatrix} = 1 \cdot 6 + (-5) \cdot 3 = -9$$

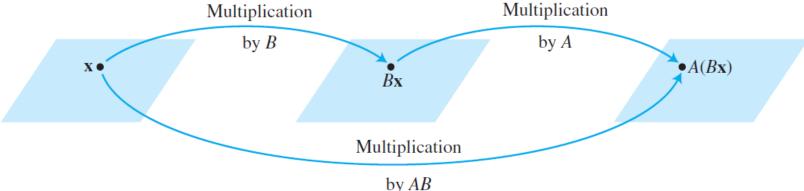
Interpretación Geométrica

Consideremos las transformaciones lineales:

$$T_A(\mathbf{x}) = A\mathbf{x}$$

 $T_B(\mathbf{x}) = B\mathbf{x}$

que mapean cualquier vector \mathbf{x} usando la matriz A o B respectivamente. Ahora, consideremos la aplicación secuencial de primero T_B , y después de T_A , tal y como se muestra en la siguiente figura:



La multiplicación de matrices nos ayuda a definir una sola transformación de tal forma que podemos transformar los vectores originales en un solo paso:

$$T_{AB}(\mathbf{x}) = (AB)\mathbf{x} = A(B\mathbf{x}) = T_A(T_B(\mathbf{x}))$$

Propiedad

 $row_i(AB) = row_i(A)B$

Ejemplo (...continuación)

multiplicacion de matrices:

- fila*columna

$$row_1(AB) = row_1(A)B = (2 \ 3) \begin{pmatrix} 4 & 3 & 6 \\ 1 & -2 & 3 \end{pmatrix} = (11 \ 0 \ 21)$$

Más propiedades	
A (BC) = (AB) C	Asociatividad
A (B + C) = AB + AC	Distributividad por la izquierda
(A + B) C = AC + BC	Distributividad por la derecha
r (AB) = (rA) B = A (rB)	Para cualquier escalar r
$I_m A = A = A I_n$	Para $A \in \mathcal{M}_{m \times n}$

Más propiedades (...continuación)

Demostración A (BC) = (AB) C

Consideremos la descomposición en columnas de la matriz C.

$$C = (\mathbf{c}_1 \ \mathbf{c}_2 \ \dots \ \mathbf{c}_p) \Longrightarrow$$

$$BC = (B\mathbf{c}_1 \ B\mathbf{c}_2 \ \dots \ B\mathbf{c}_p) \Longrightarrow$$

$$A(BC) = (A(B\mathbf{c}_1) \ A(B\mathbf{c}_2) \ \dots \ A(B\mathbf{c}_p))$$

Pero según hemos visto en la interpretación geométrica de la multiplicación de matrices que $A(Bc_i) = (AB)c_i$, por lo tanto,

$$A(BC) = ((AB)\mathbf{c}_1 \ (AB)\mathbf{c}_2 \ \dots \ (AB)\mathbf{c}_p) = (AB)C$$

Consideraciones importantes

AB ≠ BA, la multiplicación de matrices NO es conmutativa

$$AB = AC \Rightarrow B = C$$

$$AB = 0 \Rightarrow A = 0 \circ B = 0$$

Definición: Potencia de una matriz

Si tenemos $A \in \mathcal{M}_{n \times n}$, entonces dicha matriz elevada a k está definida como:

$$A^k = \underbrace{A \cdot A \cdot \cdots \cdot A}_{k \text{ veces}}$$

Nota: $A^0 = I_n$

Ejemplo

Octave: A ^ k

Definición: Traspuesta de una matriz

Si tenemos $A \in \mathcal{M}_{m \times n}$, entonces la traspuesta de A (A^T) es una matriz de $\mathcal{M}_{n \times m}$, de tal forma que las filas de A son las columnas de A^T , o más formalmente

$$(A^T)_{ij} = A_{ji}$$

Propiedades

$$(A^{T})^{T} = A$$

$$(A + B)^{T} = A^{T} + B^{T}$$

$$(rA)^{T} = rA^{T}$$

$$(AB)^{T} = B^{T}A^{T}$$

Ejemplo

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \implies A^T = \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix}$$

Octave: A'

Propiedades (...continuación)

Demostración $(AB)^T = B^T A^T$

Consideremos $A \in \mathcal{M}_{m \times n}$ y $B \in \mathcal{M}_{n \times p}$. Por la definición de multiplicación de matrices sabemos que:

$$(AB)_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

Sea $A' = A^T$ y $B' = B^T$. Por la misma razón:

$$(B^T A^T)_{ij} = (B'A')_{ij} = \sum_{k=1}^n b'_{ik} a'_{kj}$$

Pero $b'_{ik} = b_{ki}$ y $a'_{kj} = a_{jk}$, por lo que:

$$(B^T A^T)_{ij} = \sum_{k=1}^n b_{ki} \ a_{jk} = \sum_{k=1}^n a_{jk} \ b_{ki} = (AB)_{ji}$$

O lo que es lo mismo:

$$B^T A^T = (AB)^T$$

Ejercicios

- Tema 3_Enunciados de ejercicios I
 - Ejercicio 2.1.3
 - Ejercicio 2.1.10
 - Ejercicio 2.1.12
 - Ejercicio 2.1.18
 - Ejercicio 2.1.19
 - Ejercicio 2.1.20
 - Ejercicio 2.1.22
 - Ejercicio 2.1.39 (** Octave **)
 - Ejercicio 2.1.40 (** Octave **)

Índice de contenidos

- Operaciones matriciales
- Inversa de una matriz
- Matrices elementales
- Un algoritmo para invertir matrices
- Caracterización de las matrices invertibles
- Transformaciones lineales invertibles
- Matrices particionadas
- Factorización LU
- Una aplicación para gráficos por ordenador y procesamiento de imágenes
- Subespacios de \mathbb{R}^n
- Dimensión y rango

Ejemplo

El inverso de un número es un concepto claro: $5 \cdot \frac{1}{5} = 5 \cdot 5^{-1} = 5^{-1} \cdot 5 = 1$

Definición: Inversa de una matriz

Una matriz $A \in \mathcal{M}_{n \times n}$ es invertible (o no-singular) si existe otra matriz $C \in \mathcal{M}_{n \times n}$ tal que

$$AC = I_n = CA$$

A la matriz C se le denomina inversa de A, y se denota como A^{-1} . Si A es no invertible, se dice que A es una matriz singular.

Ejemplo

Octave: inv(A)

Ejemplo

Sean $A = \begin{pmatrix} 2 & 5 \\ -3 & -7 \end{pmatrix}$ y $A^{-1} = \begin{pmatrix} -7 & -5 \\ 3 & 2 \end{pmatrix}$. Se puede comprobar fácilmente que:

$$AA^{-1} = A^{-1}A = I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Propiedades

La inversa de una matriz es única.

Demostración

Asumimos que existen dos inversas diferentes C_1 y C_2 . Entonces:

$$C_2 = C_2 I = C_2 (AC_1) = (C_2 A)C_1 = IC_1 = C_1$$

lo cual es una contradicción, y por lo tanto, la inversa tiene que ser única.

Teorema: Inversa de una matriz de 2 x 2

Sea $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Si $ad - bc \neq 0$, entonces A es invertible y su inversa es:

$$A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

Teorema: Inversa de una matriz de 2 x 2

Sea $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Si $ad - bc \neq 0$, entonces A es invertible y su inversa es:

$$A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

Demostración

Es fácil de verificar que $AA^{-1} = A^{-1}A = I_2$

Teorema

Si $A \in \mathcal{M}_{n \times n}$ es invertible, entonces para todos los $\mathbf{b} \in \mathbb{R}^n$, la ecuación $A\mathbf{x} = \mathbf{b}$ tiene una única solución que es $\mathbf{x} = A^{-1}\mathbf{b}$

Demostración

- ightharpoonup Demostración $\mathbf{x} = A^{-1}\mathbf{b}$ es una solución Si sustituimos la solución en la ecuación tenemos: $A\mathbf{x} = A(A^{-1}\mathbf{b}) = (AA^{-1})\mathbf{b} = \mathbf{b}$
- Demostración x = A⁻¹b es la única solución
 Asumimos que x' ≠ x es también una solución, entonces Ax' = b

Si multiplicamos por la izquierda por A-1, tenemos:

$$A^{-1}Ax' = A^{-1}b \rightarrow x' = x$$

lo cual es una contradicción y, por lo tanto, $\mathbf{x} = A^{-1}\mathbf{b}$ debe ser la única solución

Teorema

- 1) Si A es invertible, entonces A^{-1} también es invertible, y su inversa es $A \rightarrow (A^{-1})^{-1} = A$
- 2) Si A y B son invertibles, entonces AB también es invertible, y su inversa es $B^{-1}A^{-1} \rightarrow (AB)^{-1} = B^{-1}A^{-1}$
- 3) Si A es invertible, entonces A^T también es invertible, y su inversa es $(A^{-1})^T$ \rightarrow $(A^T)^{-1} = (A^{-1})^T$

Demostración 1)

La definición de A^{-1} dice que es la matriz tal que: $AA^{-1} = A^{-1}A = I$

La inversa de A^{-1} debe ser una matriz C tal que: $CA^{-1} = A^{-1}C = I$

Si comparamos estas dos ecuaciones, podemos ver que C = A es la inversa de A^{-1}

Demostración 2)

Comprobemos que $B^{-1}A^{-1}$ es realmente la inversa de AB:

$$(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = AIA^{-1} = AA^{-1} = I$$

 $(B^{-1}A^{-1})(AB) = B^{-1}(A^{-1}A)B = B^{-1}IB = B^{-1}B = I$

Teorema (...continuación)

Demostración 3)

Comprobemos que $(A^{-1})^{T}$ es realmente la inversa de A^{T} :

$$A^{T}(A^{-1})^{T} = [(AB)^{T} = B^{T}A^{T}] = (A^{-1}A)^{T} = I^{T} = I$$

 $(A^{-1})^{T}A^{T} = [(AB)^{T} = B^{T}A^{T}] = (AA^{-1})^{T} = I^{T} = I$

Teorema (generalización del teorema anterior)

El producto de matrices **n x n** invertibles es invertible, y la inversa es el producto de sus inversas en orden inverso

$$(A_1 A_2 \dots A_p)^{-1} = A_p^{-1} A_{p-1}^{-1} \dots A_2^{-1} A_1^{-1}$$

Teorema (...continuación)

Demostración

Lo demostraremos por *inducción débil*. Sabemos que el teorema es cierto para p = 2 (por los teoremas previos). Asumimos que es cierto también para p - 1, es decir:

$$(A_1 A_2 \dots A_{p-1})^{-1} = A_{p-1}^{-1} \dots A_2^{-1} A_1^{-1}$$

Queremos saber si es cierto para p. Para ello, definimos $B = A_1 A_2 \dots A_{p-1}$. Entonces, podemos reescribir el teorema como:

$$(A_1 A_2 \dots A_p)^{-1} = (B A_p)^{-1}$$

Esta es la inversa de la multiplicación de dos matrices. Sabemos por los teoremas anteriores que $(BA_p)^{-1} = A_p^{-1}B^{-1}$. Pero supusimos que:

$$B^{-1} = (A_1 A_2 \dots A_{p-1})^{-1} = A_{p-1}^{-1} \dots A_2^{-1} A_1^{-1}$$

Y por lo tanto,

$$(BA_p)^{-1} = A_p^{-1} A_{p-1}^{-1} ... A_2^{-1} A_1^{-1}$$

Índice de contenidos

- Operaciones matriciales
- Inversa de una matriz
- Matrices elementales
- Un algoritmo para invertir matrices
- Caracterización de las matrices invertibles
- Transformaciones lineales invertibles
- Matrices particionadas
- Factorización LU
- Una aplicación para gráficos por ordenador y procesamiento de imágenes
- Subespacios de \mathbb{R}^n
- Dimensión y rango

Las operaciones elementales que podemos efectuar sobre las filas de una matriz son:

- 1) Multiplicación por un escalar
- 2) Intercambio de dos filas
- 3) Reemplazar una fila con una combinación lineal de dos o más filas

Todas estas operaciones pueden ser representadas como multiplicación de matrices

Ejemplo

Consideremos la matriz
$$A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}$$

1) Podemos multiplicar la tercera fila por un escalar *r*, multiplicando por la izquierda por la matriz:

$$E_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & r \end{pmatrix} \implies E_1 A = \begin{pmatrix} a & b & c \\ d & e & f \\ rg & rh & ri \end{pmatrix}$$

Ejemplo (...continuación)

2) Podemos intercambiar la primera y la segunda fila de la matriz, multiplicando por la izquierda por la matriz

$$E_{2} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \implies E_{2}A = \begin{pmatrix} d & e & f \\ a & b & c \\ g & h & i \end{pmatrix}$$

3) Podemos sustituir la tercera fila por $r_3 + k_1 r_1$, multiplicando por la izquierda por la matriz:

$$E_{3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ k_{1} & 0 & 1 \end{pmatrix} \implies E_{3}A = \begin{pmatrix} a & b & c \\ d & e & f \\ g + k_{1}a & h + k_{1}b & i + k_{1}c \end{pmatrix}$$

Definición: Matriz elemental

Una matriz elemental es aquella que difiere de la matriz identidad en tan sólo una simple operación elemental por filas

Teorema

La inversa de una matriz elemental es otra matriz elemental del mismo tipo. Esto es, con la que las operaciones por filas se pueden deshacer

Ejemplo (...continuación)

1)
$$E_1^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \frac{1}{r} \end{pmatrix}$$

$$2) \quad E_2^{-1} = \left(\begin{array}{ccc} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{array} \right)$$

3)
$$E_3^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -k_1 & 0 & 1 \end{pmatrix}$$

Teorema

Una matriz $A \in \mathcal{M}_{n \times n}$ es invertible, si y sólo si, es equivalente por filas a I_n . En este caso, la secuencia de operaciones que transforma A en I_n son las mismas que transforman I_n en A^{-1}

Demostración (hacia adelante)

Si A es invertible, entonces sabemos que el sistema de ecuaciones $A\mathbf{x} = \mathbf{b}$ tiene una única solución para cualquier \mathbf{b} . Si tiene una solución para todo \mathbf{b} , entonces debe tener un pivote en cada fila, que debe estar en la diagonal y, por lo tanto, la matriz escalonada reducida de A tiene que ser I_n

Demostración (hacia atrás)

Si A es equivalente por filas a I_n , entonces existe una secuencia de matrices elementales que transforma A en I_n .

$$A \sim E_1 A \sim E_2 E_1 A \sim \dots \sim E_n E_{n-1} \dots E_2 E_1 A = I_n$$

 $E = E_n E_{n-1} \dots E_2 E_1$ es un candidato a ser la inversa de A. Dado que cada matriz elemental es invertible, y el producto de matrices invertibles es invertible, entonces E es invertible y A tiene que ser su (única) inversa. Por lo tanto, E es la inversa de A y A es invertible

Índice de contenidos

- Operaciones matriciales
- Inversa de una matriz
- Matrices elementales
- Un algoritmo para invertir matrices
- Caracterización de las matrices invertibles
- Transformaciones lineales invertibles
- Matrices particionadas
- Factorización LU
- Una aplicación para gráficos por ordenador y procesamiento de imágenes
- Subespacios de \mathbb{R}^n
- Dimensión y rango

Un algoritmo para invertir matrices

Algoritmo

Algoritmo: reducir la matriz aumentada (A | I).

- Si A es invertible, entonces $(A \mid I) \sim (I \mid A^{-1})$
- Si A no es invertible, entonces no podremos reducir A en /

Este algoritmo es muy usado en la práctica porque es numéricamente estable y bastante eficiente.

Ejemplo

Sea la matriz
$$A = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 0 & 3 \\ 4 & -3 & 8 \end{pmatrix}$$
. Calcular su inversa.

Construimos la matriz aumentada:

$$\begin{pmatrix}
0 & 1 & 2 & 1 & 0 & 0 \\
1 & 0 & 3 & 0 & 1 & 0 \\
4 & -3 & 8 & 0 & 0 & 1
\end{pmatrix}$$

Un algoritmo para invertir matrices

Ejemplo (...continuación)

Transformamos la matriz aplicando operaciones de reducción por filas:

$$\begin{pmatrix} 0 & 1 & 2 & | & 1 & 0 & 0 \\ 1 & 0 & 3 & | & 0 & 1 & 0 \\ 4 & -3 & 8 & | & 0 & 0 & 1 \end{pmatrix}$$

$$\mathbf{r_1} \leftrightarrow \mathbf{r_2} \qquad \begin{pmatrix} 1 & 0 & 3 & | & 0 & 1 & 0 \\ 0 & 1 & 2 & | & 1 & 0 & 0 \\ 4 & -3 & 8 & | & 0 & 0 & 1 \end{pmatrix}$$

$$\mathbf{r_3} \leftarrow \mathbf{r_3} - 4\mathbf{r_1} \qquad \begin{pmatrix} 1 & 0 & 3 & | & 0 & 1 & 0 \\ 0 & 1 & 2 & | & 1 & 0 & 0 \\ 0 & -3 & -4 & | & 0 & -4 & 1 \end{pmatrix}$$

$$\mathbf{r_3} \leftarrow \mathbf{r_3} + 3\mathbf{r_2} \qquad \begin{pmatrix} 1 & 0 & 3 & | & 0 & 1 & 0 \\ 0 & 1 & 2 & | & 1 & 0 & 0 \\ 0 & 0 & 2 & | & 3 & -4 & 1 \end{pmatrix}$$

$$\mathbf{r_3} \leftarrow \frac{1}{2}\mathbf{r_3} \qquad \begin{pmatrix} 1 & 0 & 3 & | & 0 & 1 & 0 \\ 0 & 1 & 2 & | & 1 & 0 & 0 \\ 0 & 0 & 2 & | & 3 & -4 & 1 \end{pmatrix}$$

Un algoritmo para invertir matrices

Ejemplo (...continuación)

$$\mathbf{r_2} \leftarrow \mathbf{r_2} - 2\mathbf{r_3}$$

$$\begin{pmatrix} 1 & 0 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ -2 & 4 & -1 \\ \frac{3}{2} & -2 & \frac{1}{2} \end{pmatrix}$$

$$\mathbf{r_1} \leftarrow \mathbf{r_1} + 3\mathbf{r_3}$$

$$\begin{pmatrix} 1 & 0 & 0 & -\frac{9}{2} & 7 & -\frac{3}{2} \\ 0 & 1 & 0 & -2 & 4 & -1 \\ 0 & 0 & 1 & \frac{3}{2} & -2 & \frac{1}{2} \end{pmatrix}$$

Dado que A es equivalente por filas a I_3 , entonces A es invertible y su inversa es

$$A^{-1} = \begin{pmatrix} -\frac{9}{2} & 7 & -\frac{3}{2} \\ -2 & 4 & -1 \\ \frac{3}{2} & -2 & \frac{1}{2} \end{pmatrix}$$
. Para finalizar el ejercicio, deberíamos comprobar que
$$AA^{-1} = A^{-1}A = I_3$$

Un algoritmo para invertir matrices

Una nueva interpretación de la inversión de matrices

Construyendo la matriz aumentada (A | I), estamos resolviendo simultáneamente múltiples sistemas de ecuaciones

$$A\mathbf{x} = \mathbf{e_1}$$
 $A\mathbf{x} = \mathbf{e_2}$ $A\mathbf{x} = \mathbf{e_3}$...

Computacionalmente, esta interpretación es importante porque si queremos calcular la *i-ésima* columna de A^{-1} , es suficiente con resolver el sistema de ecuaciones

$$A\mathbf{x} = \mathbf{e_1}$$

Ejemplo (...continuación)

$$\begin{pmatrix} 0 & 1 & 2 & | & 1 \\ 1 & 0 & 3 & | & 0 \\ 4 & -3 & 8 & | & 0 \end{pmatrix} \qquad \begin{pmatrix} 0 & 1 & 2 & | & 0 \\ 1 & 0 & 3 & | & 1 \\ 4 & -3 & 8 & | & 0 \end{pmatrix} \qquad \begin{pmatrix} 0 & 1 & 2 & | & 0 \\ 1 & 0 & 3 & | & 0 \\ 4 & -3 & 8 & | & 1 \end{pmatrix}$$

Ejercicios

- Tema 3_Enunciados de ejercicios II
 - Ejercicio 2.2.1
 - Ejercicio 2.2.5
 - Ejercicio 2.2.7
 - Ejercicio 2.2.11
 - Ejercicio 2.2.19
 - Ejercicio 2.2.25
 - Ejercicio 2.2.36 (** Octave **)

Índice de contenidos

- Operaciones matriciales
- Inversa de una matriz
- Matrices elementales
- Un algoritmo para invertir matrices
- Caracterización de las matrices invertibles
- Transformaciones lineales invertibles
- Matrices particionadas
- Factorización LU
- Una aplicación para gráficos por ordenador y procesamiento de imágenes
- Subespacios de \mathbb{R}^n
- Dimensión y rango

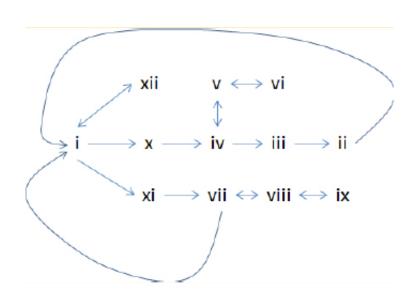
Teorema de la Matriz Invertible

Sea $A \in \mathcal{M}_{n \times n}$. Las siguientes afirmaciones son equivalentes (o todas son ciertas o todas falsas):

- i. A es invertible
- ii. A es equivalente por filas a I_n
- iii. A tiene n posiciones pivote
- iv. Ax = 0 sólo tiene la solución trivial x = 0
- v. Las columnas de A son linealmente independientes
- vi. La transformación T(x) = Ax es inyectiva
- vii. La ecuación Ax = b tiene al menos una solución para todo $b \in \mathbb{R}^n$
- viii. Las columnas de A generan todo \mathbb{R}^n
- ix. La transformación $T(\mathbf{x}) = A\mathbf{x}$ mapea \mathbb{R}^n en \mathbb{R}^n
- x. Existe una matriz $C \in \mathcal{M}_{n \times n}$ tal que $CA = I_n$
- xi. Existe una matriz $D \in \mathcal{M}_{n \times n}$ tal que $AD = I_n$
- xii. A^T es una matriz invertible

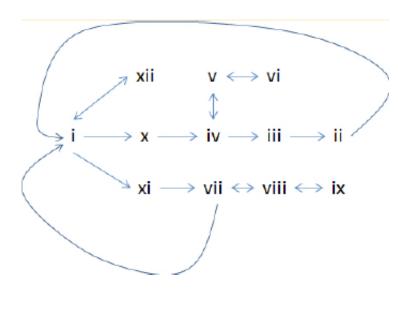
Teorema de la Matriz Invertible (...continuación)

Para probar el teorema, seguiremos el esquema de razonamiento siguiente:



- Demostración i ⇒ x
 Si i es cierto, entonces x es cierto simplemente haciendo C = A⁻¹
- Demostración $x \Rightarrow iv$ Ver ejercicio 2.1.23
- Demostración iv ⇒ iii
 Ver ejercicio 2.2.23
- Demostración iii ⇒ ii
 Si iii es cierto, entonces los n pivotes tienen que estar en la diagonal principal, y en ese caso, la matriz escalonada reducida tiene que ser In
- Demostración ii ⇒ i
 Si ii es cierto, entonces i es cierto gracias al teorema de la pag. 32
- Demostración i ⇒ xi
 Si i es cierto, entonces xi es cierto simplemente haciendo C = A-1

Teorema de la Matriz Invertible (...continuación)



- Demostración xi ⇒ vii
 Ver ejercicio 2.1.24
- Demostración vii ⇒ i Ver ejercicio 2.2.24
- Demostración vii ⇔ viii ⇔ ix
 Ver teoremas tema 2
- Demostración iv ⇔ v ⇔ vi
 Ver teoremas tema 2
- Demostración i ⇒ xii
 Ver teorema pág. 25
- Demostración i ← xii
 Ver teoremas pág. 25 intercambiando los roles de A y A^T

El verdadero potencial de este teorema es que conecta los sistemas de ecuaciones con los conceptos de invertibilidad, independencia lineal y bases de un subespacio

Corolario

- 1. Si A es invertible, entonces Ax = b tiene una única solución para todo $b \in \mathbb{R}^n$
- 2. Si $A, B \in \mathcal{M}_{n \times n}$ y $AB = I_n$, entonces A y B son invertibles y $B = A^{-1}$ y $A = B^{-1}$

Nota: ¡¡Este corolario sólo se aplica a matrices cuadradas!!

Índice de contenidos

- Operaciones matriciales
- Inversa de una matriz
- Matrices elementales
- Un algoritmo para invertir matrices
- Caracterización de las matrices invertibles
- Transformaciones lineales invertibles
- Matrices particionadas
- Factorización LU
- Una aplicación para gráficos por ordenador y procesamiento de imágenes
- Subespacios de \mathbb{R}^n
- Dimensión y rango

Consideremos la transformación lineal:

$$T: \mathbb{R}^n \to \mathbb{R}^n$$

$$\mathbf{x} \to A\mathbf{x}$$

Definición: Transformación inversa

T es invertible, si y sólo si, existe $S: \mathbb{R}^n \to \mathbb{R}^n$ tal que $\forall \mathbf{x} \in \mathbb{R}^n$:

$$S(T(\mathbf{x})) = \mathbf{x} = T(S(\mathbf{x}))$$

Ejemplo

$$T(\mathbf{x}) = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \mathbf{x}$$
 es invertible y su inversa es $S(\mathbf{x}) = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \mathbf{x}$

Demostración

$$S(T(\mathbf{x})) = S\left(\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \mathbf{x}\right) = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \mathbf{x} = \mathbf{x}$$

$$T(S(\mathbf{x})) = T\left(\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \mathbf{x}\right) = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \mathbf{x} = \mathbf{x}$$

Ejemplo

 $T(\mathbf{x}) = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \mathbf{x}$ NO es invertible porque T((1, 0)) = T((1, 1)) = (1, 0), por lo que dada la "salida" (1, 0), no podemos recuperar el vector de entrada que originó dicha salida

Teorema

Si *T* es invertible, entonces es una función sobreyectiva

Demostración

Consideremos cualquier vector $\mathbf{b} \subseteq \mathbb{R}^n$, siempre podemos aplicar la transformación S para obtener un nuevo vector $\mathbf{x} = S(\mathbf{b})$. Entonces, recuperamos \mathbf{b} haciendo uso del hecho de que T es la inversa de S, es decir, $\mathbf{b} = T(\mathbf{x})$. En otras palabras, cualquier vector \mathbf{b} está en el rango de T y, por lo tanto, T es sobreyectiva

Teorema

T es invertible, si y sólo si, *A* es invertible. Si *T* es invertible, entonces la única función que satisface la definición previa es:

$$S(\mathbf{x}) = A^{-1}\mathbf{x}$$

Demostración (hacia delante)

Si *T* es invertible, entonces es sobreyectiva (ver Teorema previo). Entonces, *A* es invertible por el Teorema de la Matriz Invertible (pág. 42, apartados *i* y *ix*)

Demostración (hacia atrás)

Si A es invertible, entonces podemos construir la transformación lineal $S = A^{-1}x$. S es una inversa de T dado que:

$$S(T(\mathbf{x})) = S(A\mathbf{x}) = A^{-1}(A\mathbf{x}) = (A^{-1}A)\mathbf{x} = \mathbf{x}$$
$$T(S(\mathbf{x})) = T(A^{-1}\mathbf{x}) = A(A^{-1}\mathbf{x}) = (AA^{-1})\mathbf{x} = \mathbf{x}$$

Teorema (...continuación)

Demostración de unicidad

Asumimos que hay dos inversas $S_1(\mathbf{x}) = B_1\mathbf{x}$ y $S_2(\mathbf{x}) = B_2\mathbf{x}$ con $B_1 \neq B_2$. Sea $\mathbf{v} \in \mathbb{R}^n$ y $\mathbf{v} = T(\mathbf{x})$ para algún $\mathbf{x} \in \mathbb{R}^n$ (dado que T es invertible y, por lo tanto, sobreyectiva, estamos seguros de que existirá al menos un \mathbf{x}). Ahora

$$S_1(\mathbf{v}) = B_1 A \mathbf{x} = \mathbf{x} = B_1 \mathbf{v}$$

$$S_2(\mathbf{v}) = B_2 A \mathbf{x} = \mathbf{x} = B_2 \mathbf{v}$$
 $\Longrightarrow B_1 \mathbf{v} = B_2 \mathbf{v}$, $\forall \mathbf{v} \in \mathbb{R}^n \Longrightarrow B_1 = B_2$

lo cual es una contradicción y, por lo tanto, existe una única inversa.

Definición: Matriz mal condicionada

Informalmente, decimos que una matriz A está mal condicionada si está "próxima a ser singular". En la práctica, esto implica que el sistema de ecuaciones $A\mathbf{x} = \mathbf{b}$ puede tener grandes variaciones en la solución (\mathbf{x}) cuando \mathbf{b} varía ligeramente.

Ejercicios

- Tema 3_Enunciados de ejercicios III
 - Ejercicio 2.3.13
 - Ejercicio 2.3.16
 - Ejercicio 2.3.33
 - Ejercicio 2.3.41 (** Octave, apartados a) y b) **)

Índice de contenidos

- Operaciones matriciales
- Inversa de una matriz
- Matrices elementales
- Un algoritmo para invertir matrices
- Caracterización de las matrices invertibles
- Transformaciones lineales invertibles
- Matrices particionadas
- Factorización LU
- Una aplicación para gráficos por ordenador y procesamiento de imágenes
- Subespacios de \mathbb{R}^n
- Dimensión y rango

Las matrices particionadas o por bloques algunas veces nos ayudan a comprender mejor la estructura del problema, mediante la identificación de bloques dentro de la matriz

Ejemplo

$$A = \begin{pmatrix} 3 & 0 & -1 & 5 & 9 & | & -2 \\ -5 & 2 & 4 & 0 & | & -3 & 1 \\ \hline -8 & -6 & 3 & 1 & 7 & | & -4 \end{pmatrix} = \begin{pmatrix} A_{11} & A_{12} & | & A_{13} \\ \hline A_{21} & | & A_{22} & | & A_{23} \end{pmatrix}$$

 $A \in \mathcal{M}_{3x6}$

$$A_{11} \in \mathcal{M}_{2x3}$$
, $A_{12} \in \mathcal{M}_{2x2}$, $A_{13} \in \mathcal{M}_{2x1}$

$$A_{21} \in \mathcal{M}_{1x3}, A_{22} \in \mathcal{M}_{1x2}, A_{23} \in \mathcal{M}_{1x1}$$

Octave

A=[3 0 -1 5 9 -2; -5 2 4 0 -3 1; -8 -6 3 1 7 -4]

A11=A(1:2, 1:3); A12= A(1:2, 4:5); A13=A(1:2, 6)

A21=A(3, 1:3); A22= A(3, 4:5); A33=A(3, 6)

Definición: Suma de matrices particionadas

Sean A y B dos matrices particionadas de la misma forma. Entonces los bloques de A + B son simplemente la suma de sus correspondientes bloques

$$A + B = \left(\begin{array}{c|c} & & \\ \hline & A_{ij} & \\ \hline & & \end{array}\right) + \left(\begin{array}{c|c} & & \\ \hline & B_{ij} & \\ \hline & & \end{array}\right) = \left(\begin{array}{c|c} & & \\ \hline & A_{ij} + B_{ij} & \\ \hline & & \end{array}\right)$$

Definición: Multiplicación por un escalar

La multiplicación por un escalar simplemente multiplica cada uno de los bloques independientemente

$$rA = r \left(\begin{array}{c|c} \hline A_{ij} \\ \hline \end{array} \right) = \left(\begin{array}{c|c} \hline rA_{ij} \\ \hline \end{array} \right)$$

Definición: Multiplicación de matrices particionadas

Multiplicar los diferentes bloques como si fuesen escalares (pero aplicando la multiplicación de matrices)

Ejemplo

$$A = \begin{bmatrix} 2 & -3 & 1 & 0 & -4 \\ 1 & 5 & -2 & 3 & -1 \\ \hline 0 & -4 & -2 & 7 & -1 \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \qquad B = \begin{bmatrix} 6 & 4 \\ -2 & 1 \\ \hline -3 & 7 \\ \hline -1 & 3 \\ 5 & 2 \end{bmatrix} = \begin{bmatrix} B_1 \\ B_2 \end{bmatrix}$$

$$AB = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} B_1 \\ B_2 \end{bmatrix} = \begin{bmatrix} A_{11}B_1 + A_{12}B_2 \\ A_{21}B_1 + A_{22}B_2 \end{bmatrix} = \begin{bmatrix} -5 & 4 \\ -6 & 2 \\ 2 & 1 \end{bmatrix}$$

Teorema: Multiplicación de matrices

Sea $A \in \mathcal{M}_{m \times n}$ y $B \in \mathcal{M}_{n \times p}$, entonces:

$$AB = \sum_{k=1}^{n} \operatorname{column}_{k}(A)\operatorname{row}_{k}(B)$$

Demostración

Analicemos cada uno de los términos de la suma

$$\operatorname{column}_{k}(A)\operatorname{row}_{k}(B) = \begin{pmatrix} a_{1k} \\ a_{2k} \\ \dots \\ a_{mk} \end{pmatrix} \begin{pmatrix} b_{k1} & b_{k2} & \dots & b_{kp} \end{pmatrix} = \begin{pmatrix} a_{1k}b_{k1} & a_{1k}b_{k2} & \dots & a_{1k}b_{kp} \\ a_{2k}b_{k1} & a_{2k}b_{k2} & \dots & a_{2k}b_{kp} \\ \dots & \dots & \dots & \dots \\ a_{mk}b_{k1} & a_{mk}b_{k2} & \dots & a_{mk}b_{kp} \end{pmatrix}$$

Teorema: Multiplicación de matrices

Demostración (...continuación)

En general, el elemento *ij* es:

$$(\operatorname{column}_k(A)\operatorname{row}_k(B))_{ij} = a_{ik}b_{kj}$$

Si analizamos el elemento ij de la suma

$$\left(\sum_{k=1}^n \operatorname{column}_k(A)\operatorname{row}_k(B)\right)_{ij} = \sum_{k=1}^n \left(\operatorname{column}_k(A)\operatorname{row}_k(B)\right)_{ij} = \sum_{k=1}^n a_{ik}b_{kj}$$

Pero esta es la definición de la multiplicación de matrices y, por lo tanto,

$$\left(\sum_{k=1}^{n} \operatorname{column}_{k}(A)\operatorname{row}_{k}(B)\right)_{ij} = (AB)_{ij}$$

Definición: Traspuesta de matrices particionadas

Para calcular la traspuesta de una matriz particionada, se traspone cada bloque como si fuesen escalares, y luego se traspone cada uno de los bloques

Ejemplo

$$A = \begin{pmatrix} A_{11} & A_{12} & A_{13} \\ \hline A_{21} & A_{22} & A_{23} \\ \hline A_{31} & A_{32} & A_{33} \end{pmatrix} \Rightarrow A^{T} = \begin{pmatrix} A_{11}^{T} & A_{21}^{T} & A_{31}^{T} \\ \hline A_{12}^{T} & A_{22}^{T} & A_{32}^{T} \\ \hline A_{13}^{T} & A_{23}^{T} & A_{33}^{T} \end{pmatrix}$$

Ejemplo

$$A = \begin{pmatrix} 2 & -3 & 1 & 0 & -4 \\ 1 & 5 & -2 & 3 & -1 \\ \hline 0 & -4 & -2 & 7 & -1 \end{pmatrix} \Rightarrow A^{T} = \begin{pmatrix} 2 & 1 & 0 \\ -3 & 5 & -4 \\ \hline 1 & -2 & -2 \\ \hline 0 & 3 & 7 \\ \hline -4 & -1 & -1 \end{pmatrix}$$

Definición: Inversa de una matriz particionada

La fórmula para cada caso depende de cada caso. A continuación se muestran algunos ejemplos con casos típicos

Ejemplo

Sea
$$A = \begin{pmatrix} A_{11} & 0 & 0 \\ \hline 0 & A_{22} & 0 \\ \hline 0 & 0 & A_{33} \end{pmatrix}$$
.

 $A \in \mathcal{M}_{n \times n}, \ A_{11} \in \mathcal{M}_{p \times p}, \ A_{22} \in \mathcal{M}_{q \times q}, \ A_{33} \in \mathcal{M}_{r \times r}$ tal que p+q+r=n. Buscamos una matriz B tal que

$$\begin{pmatrix}
A_{11} & 0 & 0 \\
\hline
0 & A_{22} & 0 \\
\hline
0 & 0 & A_{33}
\end{pmatrix}
\begin{pmatrix}
B_{11} & B_{12} & B_{13} \\
\hline
B_{21} & B_{22} & B_{23} \\
\hline
B_{31} & B_{32} & B_{33}
\end{pmatrix} = \begin{pmatrix}
I_p & 0 & 0 \\
\hline
0 & I_q & 0 \\
\hline
0 & 0 & I_r
\end{pmatrix}
\Rightarrow \begin{pmatrix}
A_{11}B_{11} & A_{11}B_{12} & A_{11}B_{13} \\
\hline
A_{22}B_{21} & A_{22}B_{22} & A_{22}B_{23} \\
\hline
A_{33}B_{31} & A_{33}B_{32} & A_{33}B_{33}
\end{pmatrix} = \begin{pmatrix}
I_p & 0 & 0 \\
\hline
0 & I_q & 0 \\
\hline
0 & 0 & I_r
\end{pmatrix}$$

Ejemplo (...continuación)

Para cada una de las entradas, tenemos un conjunto de ecuaciones:

$$\forall A_{11} \in \mathcal{M}_{p \times p} \ A_{11}B_{11} = I_p \Rightarrow B_{11} = A_{11}^{-1}$$

$$\forall A_{11} \in \mathcal{M}_{p \times p} \ A_{11}B_{12} = 0 \Rightarrow B_{12} = 0$$

$$\forall A_{11} \in \mathcal{M}_{p \times p} \ A_{11}B_{13} = 0 \Rightarrow B_{13} = 0$$

$$\forall A_{22} \in \mathcal{M}_{q \times q} \ A_{22}B_{21} = 0 \Rightarrow B_{21} = 0$$

$$\forall A_{22} \in \mathcal{M}_{q \times q} \ A_{22}B_{22} = I_q \Rightarrow B_{22} = A_{22}^{-1}$$

$$\forall A_{22} \in \mathcal{M}_{q \times q} \ A_{22}B_{23} = 0 \Rightarrow B_{23} = 0$$

$$\forall A_{33} \in \mathcal{M}_{r \times r} \ A_{33}B_{31} = 0 \Rightarrow B_{31} = 0$$

$$\forall A_{33} \in \mathcal{M}_{r \times r} \ A_{33}B_{32} = 0 \Rightarrow B_{32} = 0$$

$$\forall A_{33} \in \mathcal{M}_{r \times r} \ A_{33}B_{33} = I_r \Rightarrow B_{33} = A_{33}^{-1}$$

Finalmente,

$$B = \begin{pmatrix} A_{11}^{-1} & 0 & 0\\ \hline 0 & A_{22}^{-1} & 0\\ \hline 0 & 0 & A_{33}^{-1} \end{pmatrix}$$

Ejemplo

Sea
$$A = \begin{pmatrix} A_{11} & A_{12} \\ \hline 0 & A_{22} \end{pmatrix}$$
.
 $A \in \mathcal{M}_{n \times n}, \ A_{11} \in \mathcal{M}_{p \times p}, \ A_{12} \in \mathcal{M}_{p \times q}, \ A_{22} \in \mathcal{M}_{q \times q} \quad \text{tal que} \quad p+q=n$.

Buscamos una matriz B, tal que

$$= \left(\begin{array}{c|c|c} A_{11} & A_{12} \\ \hline 0 & A_{22} \end{array}\right) \left(\begin{array}{c|c|c} B_{11} & B_{12} \\ \hline B_{21} & B_{22} \end{array}\right) = \left(\begin{array}{c|c|c} I_p & 0 \\ \hline 0 & I_q \end{array}\right) \Rightarrow$$

$$\left(\begin{array}{c|c|c} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ \hline A_{22}B_{21} & A_{22}B_{22} \end{array}\right) = \left(\begin{array}{c|c|c} I_p & 0 \\ \hline 0 & I_q \end{array}\right)$$

Ejemplo (...continuación)

Para cada una de las entradas, tenemos un conjunto de ecuaciones:

$$\forall A_{22} \in \mathcal{M}_{q \times q} \ A_{22}B_{21} = 0 \Rightarrow B_{21} = 0$$

$$\forall A_{22} \in \mathcal{M}_{q \times q} \ A_{22}B_{22} = I_q \Rightarrow B_{22} = A_{22}^{-1}$$

$$\forall A_{11} \in \mathcal{M}_{q \times q}, A_{12} \in \mathcal{M}_{p \times q} \quad A_{11}B_{11} + A_{12}B_{21} = I_p \Rightarrow [B_{21} = 0] \Rightarrow$$

$$A_{11}B_{11} = I_p \Rightarrow B_{11} = A_{11}^{-1}$$

$$\forall A_{11} \in \mathcal{M}_{q \times q}, A_{12} \in \mathcal{M}_{p \times q} \quad A_{11}B_{12} + A_{12}B_{22} = 0 \Rightarrow [B_{22} = A_{22}^{-1}] \Rightarrow$$

$$A_{11}B_{12} + A_{12}A_{22}^{-1} = 0 \Rightarrow A_{11}B_{12} = -A_{12}A_{22}^{-1} \Rightarrow$$

$$B_{12} = -A_{11}^{-1}A_{12}A_{22}^{-1}$$

Finalmente,

$$B = \left(\begin{array}{c|c|c} A_{11}^{-1} & -A_{11}^{-1} A_{12} A_{22}^{-1} \\ \hline 0 & A_{22}^{-1} \end{array}\right)$$

Ejercicios

- Tema 3_Enunciados de ejercicios IV
 - Ejercicio 2.4.1
 - Ejercicio 2.4.2
 - Ejercicio 2.4.3
 - Ejercicio 2.4.4

Índice de contenidos

- Operaciones matriciales
- Inversa de una matriz
- Matrices elementales
- Un algoritmo para invertir matrices
- Caracterización de las matrices invertibles
- Transformaciones lineales invertibles
- Matrices particionadas
- Factorización LU
- Una aplicación para gráficos por ordenador y procesamiento de imágenes
- Subespacios de \mathbb{R}^n
- Dimensión y rango

Ejemplo

Supongamos que tenemos una colección de sistemas de ecuaciones de la forma:

$$Ax = b_1$$

$$Ax = b_2$$

...

y A no invertible. ¿Existe alguna forma eficiente de resolver todos los sistemas a la vez?

La solución es factorizar A como A = LU (ver a continuación) y resolver el sistema de ecuaciones en 2 pasos. De hecho, este método es tan eficiente que incluso se usa para resolver sistemas simples de ecuaciones

Definición: Factorización LU

Sea $A \in \mathcal{M}_{m \times n}$ que puede ser reducida a su forma escalonada reducida sin realizar permutaciones de filas. Podemos factorizar A como A = LU, donde L es una matriz triangular inferior invertible (con 1's en la diagonal principal) de tamaño m x m, y U es una matriz triangular superior de tamaño m x n

$$[L,U]=lu(A)$$

Ejemplo

Sea la matriz $A \in \mathcal{M}_{4 \times 5}$. La factorización LU producirá dos matrices L y U con la siguiente estructura:

$$A = LU = \begin{bmatrix} 1 & 0 & 0 & 0 \\ * & 1 & 0 & 0 \\ * & * & 1 & 0 \\ * & * & * & 1 \end{bmatrix} \begin{bmatrix} \bullet & * & * & * & * \\ 0 & \bullet & * & * & * \\ 0 & 0 & 0 & \bullet & * \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

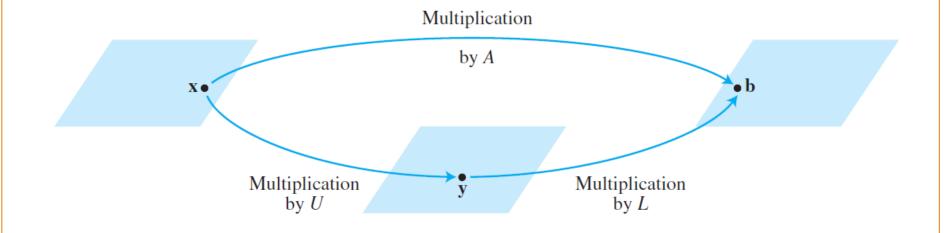
$$L$$

$$U$$

Resolver sistemas de ecuaciones lineales usando la descomposición LU

Consideremos el sistema de ecuaciones Ax = b, y asumimos que tenemos A descompuesto como A = LU. Entonces podemos resolver el sistema de ecuaciones en dos pasos:

$$A\mathbf{x} = \mathbf{b} \Rightarrow (LU)\mathbf{x} = L(U\mathbf{x}) = \mathbf{b} \Rightarrow \begin{cases} L\mathbf{y} = \mathbf{b} \\ U\mathbf{x} = \mathbf{y} \end{cases}$$



Ejemplo

Consideremos la matriz A

$$A = \begin{bmatrix} 3 & -7 & -2 & 2 \\ -3 & 5 & 1 & 0 \\ 6 & -4 & 0 & -5 \\ -9 & 5 & -5 & 12 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 2 & -5 & 1 & 0 \\ -3 & 8 & 3 & 1 \end{bmatrix} \begin{bmatrix} 3 & -7 & -2 & 2 \\ 0 & -2 & -1 & 2 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & -1 \end{bmatrix} = LU$$

y **b** = (-9, 5, 7, 11). Primero resolvemos Ly = b

$$\begin{bmatrix} L & \mathbf{b} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & -9 \\ -1 & 1 & 0 & 0 & 5 \\ 2 & -5 & 1 & 0 & 7 \\ -3 & 8 & 3 & 1 & 11 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 0 & -9 \\ 0 & 1 & 0 & 0 & -4 \\ 0 & 0 & 1 & 0 & 5 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} I & \mathbf{y} \end{bmatrix}$$

y después resolvemos Ux = y

$$\begin{bmatrix} U & \mathbf{y} \end{bmatrix} = \begin{bmatrix} 3 & -7 & -2 & 2 & -9 \\ 0 & -2 & -1 & 2 & -4 \\ 0 & 0 & -1 & 1 & 5 \\ 0 & 0 & 0 & -1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 0 & 3 \\ 0 & 1 & 0 & 0 & 4 \\ 0 & 0 & 1 & 0 & -6 \\ 0 & 0 & 0 & 1 & -1 \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} 3 \\ 4 \\ -6 \\ -1 \end{bmatrix}$$

El truco está en que, gracias a la estructura triangular, resolver estos dos sistemas de ecuaciones es bastante rápido.

Algoritmo de factorización LU

Asumimos que A es equivalente por filas a U usando sólo sustitución de filas con las filas por encima de la fila reemplazada. Entonces, existirá una secuencia de matrices elementales tal que:

$$A \sim U \Rightarrow E_p...E_2E_1A = U \Rightarrow A = (E_p...E_2E_1)^{-1}U$$

Por inspección, vemos que $L = (E_p ... E_2 E_1)^{-1}$

En el algoritmo anterior se hace uso del siguiente teorema:

Teorema

- 1. El **producto** de 2 matrices triangulares inferiores es triangular inferior
- 2. La **inversa** de una matriz triangular inferior es triangular inferior

Ejemplo

$$\mathbf{r}_{2} \leftarrow \mathbf{r}_{2} - \frac{1}{2}\mathbf{r}_{1} \quad E_{1} = \begin{pmatrix} 1 & 0 & 0 \\ -\frac{1}{2} & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \begin{pmatrix} 2 & 1 & 0 \\ 0 & 1 & 2 \end{pmatrix}$$

$$\mathbf{r}_{3} \leftarrow \mathbf{r}_{3} - \frac{2}{3}\mathbf{r}_{2} \quad E_{2} = \begin{pmatrix} 1 & 0 & 0 \\ -\frac{1}{2} & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad U = \begin{pmatrix} 2 & 1 & 0 \\ 0 & \frac{3}{2} & 1 \\ 0 & 1 & 2 \end{pmatrix}$$

$$U = \begin{pmatrix} 2 & 1 & 0 \\ 0 & \frac{3}{2} & 1 \\ 0 & 0 & \frac{4}{3} \end{pmatrix}$$

Ahora, calculamos *L* como:

$$L = (E_2 E_1)^{-1} = E_1^{-1} E_2^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & \frac{2}{3} & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ 0 & \frac{2}{3} & 1 \end{pmatrix}$$

Ejemplo

Podemos ver que las matrices *L* y *U* son asimétricas, en el sentido que *L* tiene 1's en su diagonal principal, pero *U* no. Podemos extraer los elementos de la diagonal de *U* a otra matriz *D* simplemente dividiendo la correspondiente fila de *U* por ese elemento:

$$A = LU = \begin{pmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ 0 & \frac{2}{3} & 1 \end{pmatrix} \begin{pmatrix} 2 & 1 & 0 \\ 0 & \frac{3}{2} & 1 \\ 0 & 0 & \frac{4}{3} \end{pmatrix}$$
$$= LDU = \begin{pmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ 0 & \frac{2}{3} & 1 \end{pmatrix} \begin{pmatrix} 2 & 0 & 0 \\ 0 & \frac{3}{2} & 0 \\ 0 & 0 & \frac{4}{3} \end{pmatrix} \begin{pmatrix} 1 & \frac{1}{2} & 0 \\ 0 & 1 & \frac{2}{3} \\ 0 & 0 & 1 \end{pmatrix}$$

donde *D* es siempre una matriz diagonal

Otras factorizaciones

Hay muchas otras posibles maneras de factorizar una matriz $A \in \mathcal{M}_{m \times n}$. Se pueden ver ejemplos en: https://en.wikipedia.org/wiki/Matrix_decomposition . Entre los más importantes están:

QR: A = QR donde $Q \in \mathcal{M}_{m \times m}$ es ortogonal $(Q^t Q = D)$ y $R \in \mathcal{M}_{m \times n}$ es triangular superior

SVD: $A = UDV^t$ donde $U \in \mathcal{M}_{m \times m}$ es unitaria ($U^tU = I_m$), $D \in \mathcal{M}_{m \times n}$ es diagonal, y $V \in \mathcal{M}_{n \times n}$ es también unitaria ($V^tV = I_n$)

Spectral: $A = PDP^{-1}$ (sólo para matrices cuadradas) donde $P \in \mathcal{M}_{n \times n}$ y

 $D \in \mathcal{M}_{n \times n}$ es diagonal

Ejercicios

- Tema 3_Enunciados de ejercicios V
 - Ejercicio 2.5.9
 - Ejercicio 2.5.Practice problem

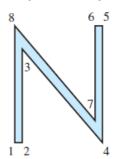
Índice de contenidos

- Operaciones matriciales
- Inversa de una matriz
- Matrices elementales
- Un algoritmo para invertir matrices
- Caracterización de las matrices invertibles
- Transformaciones lineales invertibles
- Matrices particionadas
- Factorización LU
- Una aplicación para gráficos por ordenador y procesamiento de imágenes
- Subespacios de \mathbb{R}^n
- Dimensión y rango

Ejemplo

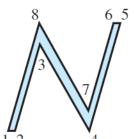
En gráficos vectoriales, los gráficos se describen como un conjunto de puntos conectados, cuyas coordenadas son conocidas.

Por ejemplo, la letra N mayúscula está determinada por 8 puntos o vértices. Las coordenadas de estos puntos pueden ser almacenadas en una matriz D.



Podemos generar la "cursiva" aplicando una deformación sobre las coordenadas originales de la

forma
$$T(\mathbf{x}) = A\mathbf{x}$$
 donde $A = \begin{pmatrix} 1 & 0.25 \\ 0 & 1 \end{pmatrix}$



$$AD = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 0 & .5 & 2.105 & 6 & 8 & 7.5 & 5.895 & 2 \\ 0 & 0 & 6.420 & 0 & 8 & 8 & 1.580 & 8 \end{bmatrix}$$

Ejemplo (...continuación)

Ahora, si queremos reducir (escalar) todas las coordenadas x de un punto por 0,75 después de aplicar la deformación, podemos componer las transformaciones.

La matriz que escala las coordenadas x por 0,75 sería la siguiente:

$$S = \begin{bmatrix} .75 & 0 \\ 0 & 1 \end{bmatrix}$$

Por lo tanto, la matriz de la transformación compuesta sería:

$$SA = \begin{bmatrix} .75 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & .25 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} .75 & .1875 \\ 0 & 1 \end{bmatrix}$$

Ejemplo

La traslación de coordenadas puede ser expresada como $T(x) = x + x_0$. Pero esto no es una transformación lineal:

$$T(\mathbf{u}) = \mathbf{u} + \mathbf{x}_0$$

 $T(\mathbf{v}) = \mathbf{v} + \mathbf{x}_0$
 $T(\mathbf{u} + \mathbf{v}) = \mathbf{u} + \mathbf{v} + \mathbf{x}_0$
 $T(\mathbf{u}) + T(\mathbf{v}) = (\mathbf{u} + \mathbf{x}_0) + (\mathbf{v} + \mathbf{x}_0) = \mathbf{u} + \mathbf{v} + 2\mathbf{x}_0$
 $T(\mathbf{u} + \mathbf{v}) \neq T(\mathbf{u}) + T(\mathbf{v})$

Podemos solucionar este problema con coordenadas homogéneas

Definición: Coordenadas homogéneas

Dado un punto con coordenadas **x**, podemos construir sus **coordenadas homogéneas** como:

$$\tilde{\mathbf{x}} = \begin{pmatrix} h\mathbf{x} \\ h \end{pmatrix}$$

O, en otras palabras, dadas las coordenadas homogéneas $\tilde{\mathbf{u}} = \begin{pmatrix} \mathbf{u} \\ h \end{pmatrix}$, estas representan el punto en $\frac{\mathbf{u}}{h}$. Se acostumbra a utilizar $\mathbf{h} = \mathbf{1}$ (pero no es obligatorio, y en ciertas aplicaciones es mejor usar otros h's)

Ejemplo

El punto (1,2) en 2D puede ser representado en coordenadas homogéneas como (1, 2, 1), como (2, 4, 2), e incluso como (-2, -4, -2). Todos ellos representan el mismo punto.

Ejemplo

Ahora, la traslación de coordenadas con coordenadas homogéneas es una transformación lineal. Por ejemplo, en 2D:

$$T(\tilde{\mathbf{x}}) = A\tilde{\mathbf{x}} = \begin{pmatrix} 1 & 0 & \Delta x \\ 0 & 1 & \Delta y \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = \begin{pmatrix} x + \Delta x \\ y + \Delta y \\ 1 \end{pmatrix}$$

Transformaciones en 2D con coordenadas homogéneas

En general, cualquier transformación en 2D de la forma T(x) = Ax puede ser representada en coordenadas homogéneas como

$$T(\tilde{\mathbf{x}}) = \begin{pmatrix} A & \mathbf{0} \\ \mathbf{0} & 1 \end{pmatrix} \tilde{\mathbf{x}}$$

Transformaciones en 2D con coordenadas homogéneas (...continuación)

Ejemplos típicos son:

$$\begin{bmatrix} \cos \varphi & -\sin \varphi & 0 \\ \sin \varphi & \cos \varphi & 0 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} s & 0 & 0 \\ 0 & t & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Rotación antihoraria alrededor del origen, con ángulo φ

$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix},$$

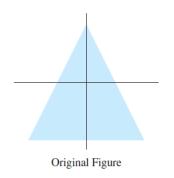
Reflexión y = x

$$\begin{bmatrix}
s & 0 & 0 \\
0 & t & 0 \\
0 & 0 & 1
\end{bmatrix}$$

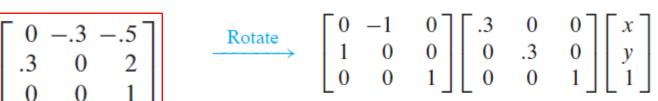
Escalado de *x* por *s*, e y por t

Composición de transformaciones

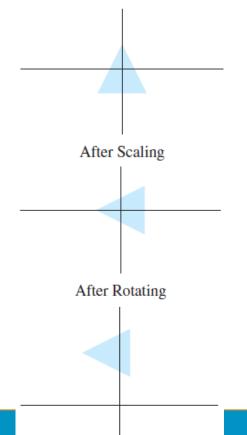
Usando las matrices de la transparencia anterior, hallar la matriz de la transformación compuesta que escala por un factor 0.3, rota 90° sobre el origen y finalmente realiza una traslación añadiendo (-0.5, 2) a cada punto.



$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \xrightarrow{\text{Scale}} \begin{bmatrix} .3 & 0 & 0 \\ 0 & .3 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$



$$\frac{\text{Translate}}{\longrightarrow} \begin{bmatrix} 1 & 0 & -.5 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$



After Translating

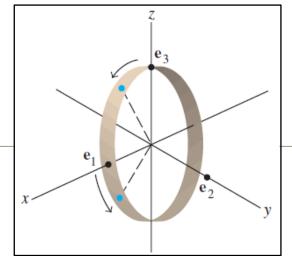
Transformaciones en 3D con coordenadas homogéneas

Supongamos que queremos

- 1. Rotar un punto 30º alrededor del eje Y
- 2. Después, trasladarlo por (-6, 4, 5)

Necesitamos usar la transformación $T(\tilde{\mathbf{x}}) = \tilde{A}\tilde{\mathbf{x}}$ con

$$\tilde{A} = \begin{pmatrix} 1 & 0 & 0 & -6 \\ 0 & 1 & 0 & 4 \\ 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos(30^\circ) & 0 & \sin(30^\circ) & 0 \\ 0 & 1 & 0 & 0 \\ -\sin(30^\circ) & 0 & \cos(30^\circ) & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \qquad \tilde{x} = \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$



Ejemplo

Una aplicación con gráficos en 3D: https://www.youtube.com/watch?v=EsNmiiKIRXQ

Ejercicios

- Tema 3_Enunciados de ejercicios VI
 - Ejercicio 2.7.2
 - Ejercicio 2.7.3
 - Ejercicio 2.7.10
 - Ejercicio 2.7.22 (*** Octave ***)

Índice de contenidos

- Operaciones matriciales
- Inversa de una matriz
- Matrices elementales
- Un algoritmo para invertir matrices
- Caracterización de las matrices invertibles
- Transformaciones lineales invertibles
- Matrices particionadas
- Factorización LU
- Una aplicación para gráficos por ordenador y procesamiento de imágenes
- Subespacios de \mathbb{R}^n
- Dimensión y rango

Definición: Subespacio de Rⁿ

 $H \subseteq \mathbb{R}^n$ es un subespacio de \mathbb{R}^n si:

- **1. 0** ∈ *H*
- 2. $\forall \mathbf{u}, \mathbf{v} \in H$, $\mathbf{u} + \mathbf{v} \in H \rightarrow H$ está cerrado bajo la suma de vectores
- 3. $\forall \mathbf{u} \in H, \forall r \in \mathbb{R}, r\mathbf{u} \in H \rightarrow H$ está cerrado bajo la multiplicación por un escalar

Ejemplo: subespacios especiales

Los siguientes 2 conjuntos son subespacios de \mathbb{R}^n :

- 1. $H = \{0\}$
- 2. $H = \mathbb{R}^n$

Ejemplo: Plano

Un plano está definido como: $H = \operatorname{Span} \{ \mathbf{v}_1, \mathbf{v}_2 \} = \{ \mathbf{v} \in \mathbb{R}^n | \mathbf{v} = \lambda_1 \mathbf{v}_1 + \lambda_2 \mathbf{v}_2 \}$

Este plano es un subespacio de \mathbb{R}^3

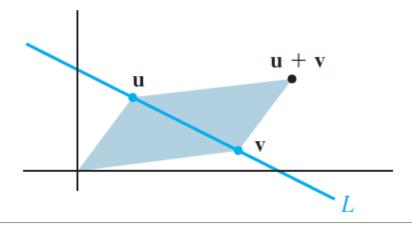
Demostración

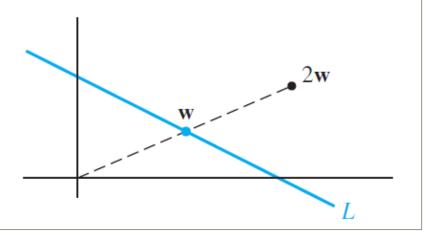
- 1. Demostrar $\mathbf{0} \in H \rightarrow \text{Si } \lambda_1 = \lambda_2 = 0$, entonces $\mathbf{v} = \mathbf{0}$
- 2. Demostrar $\mathbf{u} + \mathbf{v} \in H$ \Rightarrow $\mathbf{u} \in H \Rightarrow \mathbf{u} = \lambda_{1u}\mathbf{v}_1 + \lambda_{2u}\mathbf{v}_2$ $\mathbf{v} \in H \Rightarrow \mathbf{v} = \lambda_{1v}\mathbf{v}_1 + \lambda_{2v}\mathbf{v}_2$ $\mathbf{u} + \mathbf{v} = (\lambda_{1u}\mathbf{v}_1 + \lambda_{2u}\mathbf{v}_2) + (\lambda_{1v}\mathbf{v}_1 + \lambda_{2v}\mathbf{v}_2)$ $= (\lambda_{1u} + \lambda_{1v})\mathbf{v}_1 + (\lambda_{2u} + \lambda_{2v})\mathbf{v}_2 \in H$
- 3. Demostrar $r\mathbf{u} \in H \Rightarrow \mathbf{u} = \lambda_{1u}\mathbf{v}_1 + \lambda_{2u}\mathbf{v}_2$ $r\mathbf{u} = r(\lambda_{1u}\mathbf{v}_1 + \lambda_{2u}\mathbf{v}_2)$ $= r\lambda_{1u}\mathbf{v}_1 + r\lambda_{2u}\mathbf{v}_2 \in H$

Ejemplo: Recta que no pasa por el origen

Una recta (L) que no pasa por el origen, no es un subespacio, porque

- 1. **0** ∉ *L*
- 2. Si tomamos 2 puntos de la recta (\mathbf{u} y \mathbf{v}), $\mathbf{u} + \mathbf{v} \notin L$
- 3. Si tomamos un punto de la recta (w), 2w ∉ L



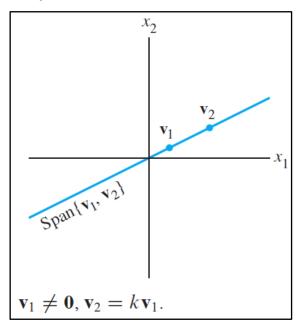


Ejemplo: Recta que pasa por el origen

Consideremos v_1 y $v_2 = kv_1$. Entonces,

$$H = \operatorname{Span} \left\{ \mathbf{v}_1, \mathbf{v}_2 \right\} = \operatorname{Span} \left\{ \mathbf{v}_1 \right\}$$

es una recta. Es fácil de probar que esta recta es un subespacio de \mathbb{R}^n .



Definición: Espacio columna de una matriz

Sea $A \in \mathcal{M}_{m \times n}$. Sean $a_i \in \mathbb{R}^m$ las columnas de la matriz A. El **espacio columna** de A se define como:

$$\operatorname{Col}\{A\} = \operatorname{Span}\{\mathbf{a}_1, \mathbf{a}_2, ..., \mathbf{a}_n\} \subseteq \mathbb{R}^m$$

Teorema

 $Col\{A\}$ es un subespacio de \mathbb{R}^m

Ejemplo

Sea
$$A = \begin{pmatrix} 1 & -3 & -4 \\ -4 & 6 & -2 \\ -3 & 7 & 6 \end{pmatrix}$$
 y $\mathbf{b} = \begin{pmatrix} 3 \\ 3 \\ -4 \end{pmatrix}$. Determinar si \mathbf{b} pertenece al Col $\{A\}$.

Ejemplo

Sea
$$A = \begin{pmatrix} 1 & -3 & -4 \\ -4 & 6 & -2 \\ -3 & 7 & 6 \end{pmatrix}$$
 y $\mathbf{b} = \begin{pmatrix} 3 \\ 3 \\ -4 \end{pmatrix}$. Determinar si \mathbf{b} pertenece al Col $\{A\}$.

Solución:

Si $\mathbf{b} \in \text{Col}\{A\}$ deberán existir unos coeficientes \mathbf{x}_1 , \mathbf{x}_2 y \mathbf{x}_3 tales que:

$$\mathbf{b} = x_1 \mathbf{a_1} + x_2 \mathbf{a_2} + x_3 \mathbf{a_3}$$

Para encontrar esos coeficientes, resolvemos el sistema de ecuaciones Ax = b.

$$\begin{pmatrix} 1 & -3 & -4 & 3 \\ -4 & 6 & -2 & 3 \\ -3 & 7 & 6 & -4 \end{pmatrix} \sim \begin{pmatrix} 1 & -3 & -4 & 3 \\ 0 & -6 & -18 & 15 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

De hecho, hay infinitas soluciones al sistema de ecuaciones y, por lo tanto, $\mathbf{b} \in \text{Col}\{A\}$

Definición: Espacio nulo de una matriz

Sea $A \in \mathcal{M}_{m \times n}$. El **espacio nulo** de A se define como:

$$\mathrm{Nul}\{A\} = \{\mathbf{v} \in \mathbb{R}^n | A\mathbf{v} = \mathbf{0}\}$$

Teorema

 $Nul\{A\}$ es un subespacio de \mathbb{R}^n

- 1. Demostrar $\mathbf{0} \in Nul\{A\} \rightarrow A\mathbf{0} = \mathbf{0} \Rightarrow \mathbf{0} \in Nul\{A\}$
- 2. Demostrar $\mathbf{u} + \mathbf{v} \in H \rightarrow \mathbf{u} \in \mathrm{Nul}\{A\} \Rightarrow A\mathbf{u} = \mathbf{0}$ $\mathbf{v} \in \mathrm{Nul}\{A\} \Rightarrow A\mathbf{v} = \mathbf{0}$ $A(\mathbf{u} + \mathbf{v}) = A\mathbf{u} + A\mathbf{v} = \mathbf{0} + \mathbf{0} = \mathbf{0} \Rightarrow \mathbf{u} + \mathbf{v} \in \mathrm{Nul}\{A\}$
- 3. Demostrar $r\mathbf{u} \in H \rightarrow \mathbf{u} \in \mathrm{Nul}\{A\} \Rightarrow A\mathbf{u} = \mathbf{0}$ $A(r\mathbf{u}) = rA\mathbf{u} = r\mathbf{0} = \mathbf{0} \Rightarrow r\mathbf{u} \in \mathrm{Nul}\{A\}$

Definición: Base de un subespacio

Sea $H \subseteq \mathbb{R}^n$. El conjunto de vectores B es una base de H si:

- 1. Todos los vectores en *B* son linealmente independientes
- 2. $H = \operatorname{Span}\{B\}$

Base estándar de \mathbb{R}^n

Sean los vectores:

$$\mathbf{e}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ ... \\ 0 \end{pmatrix} \quad \mathbf{e}_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ ... \\ 0 \end{pmatrix} \quad \mathbf{e}_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \\ ... \\ 0 \end{pmatrix} \quad ... \quad \mathbf{e}_n = \begin{pmatrix} 0 \\ 0 \\ 0 \\ ... \\ 1 \end{pmatrix}$$

El conjunto $B = \{ e_1, e_2, ..., e_n \}$ es la base estándar de \mathbb{R}^n

Ejemplo

Encontrar una base para el espacio nulo de
$$A = \begin{bmatrix} -3 & 6 & -1 & 1 & -7 \\ 1 & -2 & 2 & 3 & -1 \\ 2 & -4 & 5 & 8 & -4 \end{bmatrix}$$

Ejemplo

Encontrar una base para el espacio nulo de
$$A = \begin{bmatrix} -3 & 6 & -1 & 1 & -7 \\ 1 & -2 & 2 & 3 & -1 \\ 2 & -4 & 5 & 8 & -4 \end{bmatrix}$$

Solución

El espacio nulo de A son todos aquellos vectores que satisfacen Ax = 0.

$$\begin{bmatrix} A & \mathbf{0} \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 0 & -1 & 3 & 0 \\ 0 & 0 & 1 & 2 & -2 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}, \quad \begin{aligned} x_1 - 2x_2 & - & x_4 + 3x_5 = 0 \\ x_3 + 2x_4 - 2x_5 = 0 \\ 0 = 0 \end{aligned}$$

Por lo que, la solución general es (en forma vectorial paramétrica):

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 2x_2 + x_4 - 3x_5 \\ x_2 \\ -2x_4 + 2x_5 \\ x_4 \\ x_5 \end{bmatrix} = x_2 \begin{bmatrix} 2 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 1 \\ 0 \\ -2 \\ 1 \\ 0 \end{bmatrix} + x_5 \begin{bmatrix} -3 \\ 0 \\ 2 \\ 0 \\ 1 \end{bmatrix} = x_2 \mathbf{u} + x_4 \mathbf{v} + x_5 \mathbf{w}$$

Ejemplo (...continuación)

El conjunto $B = \{ \mathbf{u}, \mathbf{v}, \mathbf{w} \} = \{ (2,1,0,0,0), (1,0,-2,1,0), (-3,0,2,0,1) \}$ es una base de **Nul{A}**. Por construcción, estos vectores son linealmente independientes.

Ejemplo: Espacio Nulo y sistemas de ecuaciones

Consideremos
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

- {e₃} es una base del Nul{A}
- \triangleright Consideremos **b** = (7, 3, 0). La solución general de Ax = b es de la forma:

$$\mathbf{x} = \mathbf{x_0} + \mathbf{x}_{Nul}$$

donde $\mathbf{x_0}$ es una solución de $A\mathbf{x} = \mathbf{b}$ que no pertenece al $\text{Nul}\{A\}$ y \mathbf{x}_{nul} pertenece al $\text{Nul}\{A\}$. Para este caso particular,

$$\mathbf{x} = (7, 3, 0) + x_3 \mathbf{e_3}$$

Ejemplo

Encontrar una base para el espacio columna de $B = \begin{bmatrix} 1 & 0 & -3 & 3 & 0 \\ 0 & 1 & 2 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$

Solución

De las columnas que no tienen pivote de la matriz B, sabemos que:

$$\mathbf{b}_3 = -3\mathbf{b}_1 + 2\mathbf{b}_2$$
$$\mathbf{b}_4 = 5\mathbf{b}_1 - \mathbf{b}_2$$

Entonces,
$$\operatorname{Col}\{B\} = \left\{ \mathbf{v} \in \mathbb{R}^4 \middle| \mathbf{v} = x_1 \mathbf{b}_1 + x_2 \mathbf{b}_2 + x_3 \mathbf{b}_3 + x_4 \mathbf{b}_4 + x_5 \mathbf{b}_5 \right\}$$

$$= \left\{ \mathbf{v} \in \mathbb{R}^4 \middle| \begin{array}{ccc} \mathbf{v} &= & x_1 \mathbf{b}_1 + x_2 \mathbf{b}_2 + x_3 (-3 \mathbf{b}_1 + 2 \mathbf{b}_2) + \\ & & x_4 (5 \mathbf{b}_1 - \mathbf{b}_2) + x_5 \mathbf{b}_5 \end{array} \right\}$$

$$= \left\{ \mathbf{v} \in \mathbb{R}^4 \middle| \mathbf{v} = x_1' \mathbf{b}_1 + x_2' \mathbf{b}_2 + x_5 \mathbf{b}_5 \right\}$$

Y, por lo tanto: $Basis\{Col\{B\}\}=\{b_1,b_2,b_5\}$

Ejemplo

Encontrar una base para el espacio columna de $A = \begin{bmatrix} 1 & 3 & 3 & 2 & -9 \\ -2 & -2 & 2 & -8 & 2 \\ 2 & 3 & 0 & 7 & 1 \\ 3 & 4 & -1 & 11 & -8 \end{bmatrix}$

Solución

Resulta que $A \sim B$ (B del ejemplo anterior). Dado que las operaciones por filas no afectan la relaciones de independencia lineal entre las columnas de la matriz, deberíamos tener que:

$$\mathbf{a}_3 = -3\mathbf{a}_1 + 2\mathbf{a}_2$$
$$\mathbf{a}_4 = 5\mathbf{a}_1 - \mathbf{a}_2$$

Y, por lo tanto, $Basis\{Col\{A\}\} = \{a_1, a_2, a_5\}$

Teorema

Las columnas pivote de *A* forman una base de Col{*A*}

Ejercicios

- Tema 3_Enunciados de ejercicios VII
 - Ejercicio 2.8.1
 - Ejercicio 2.8.2
 - Ejercicio 2.8.5

Índice de contenidos

- Operaciones matriciales
- Inversa de una matriz
- Matrices elementales
- Un algoritmo para invertir matrices
- Caracterización de las matrices invertibles
- Transformaciones lineales invertibles
- Matrices particionadas
- Factorización LU
- Una aplicación para gráficos por ordenador y procesamiento de imágenes
- Subespacios de \mathbb{R}^n
- Dimensión y rango

Definición: Coordenadas de un vector en la base B

Supongamos que $B = \{ \mathbf{b}_1, \mathbf{b}_2, ..., \mathbf{b}_p \}$ es una base para el subespacio $H \subseteq \mathbb{R}^n$.

Para cada $\mathbf{x} \in H$, las coordenadas de \mathbf{x} relativas a la base B son los pesos c_i tales que:

$$\mathbf{x} = c_1 \mathbf{b}_1 + c_2 \mathbf{b}_2 + \dots + c_p \mathbf{b}_p$$

Las coordenadas de x con respecto a la base B es el vector en \mathbb{R}^p

$$[\mathbf{x}]_B = \begin{pmatrix} c_1 \\ c_2 \\ \dots \\ c_p \end{pmatrix}$$

Ejemplo

Sean $\mathbf{x} = (3, 12, 7), \mathbf{v_1} = (3, 6, 2), \mathbf{v_2} = (-1, 0, 1), B = {\mathbf{v_1}, \mathbf{v_2}}.$

- 1. Demostrar que *B* es un conjunto linealmente independiente
- 2. Encontrar las coordenadas de x en el sistema de coordenadas B

Ejemplo

Sean
$$\mathbf{x} = (3, 12, 7), \mathbf{v_1} = (3, 6, 2), \mathbf{v_2} = (-1, 0, 1), B = {\mathbf{v_1}, \mathbf{v_2}}.$$

- 1. Demostrar que *B* es un conjunto linealmente independiente
- 2. Encontrar las coordenadas de x en el sistema de coordenadas B

Solución

1. Necesitamos probar que la única solución del sistema de ecuaciones

$$c_1 \mathbf{v_1} + c_2 \mathbf{v_2} = \mathbf{0} \text{ es } c_1 = c_2 = 0$$

$$\begin{pmatrix} 3 & -1 & 0 & 0 \\ 6 & 0 & 0 \\ 2 & 1 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Ejemplo

Sean
$$\mathbf{x} = (3, 12, 7), \mathbf{v_1} = (3, 6, 2), \mathbf{v_2} = (-1, 0, 1), B = {\mathbf{v_1}, \mathbf{v_2}}.$$

- 1. Demostrar que *B* es un conjunto linealmente independiente
- 2. Encontrar las coordenadas de x en el sistema de coordenadas B

Solución

1. Necesitamos probar que la única solución del sistema de ecuaciones

$$c_1 \mathbf{v_1} + c_2 \mathbf{v_2} = \mathbf{0} \text{ es } c_1 = c_2 = 0$$

$$\begin{pmatrix} 3 & -1 & 0 & 0 \\ 6 & 0 & 0 \\ 2 & 1 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

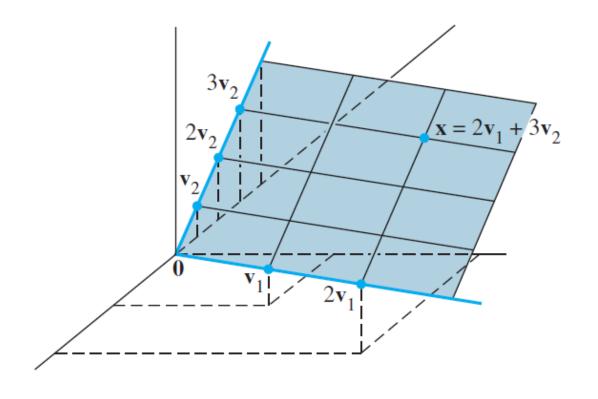
2. Necesitamos encontrar c_1 y c_2 tales que c_1 **v**₁ + c_2 **v**₂ = **x**

$$\left(\begin{array}{cc|c} 3 & -1 & 3 \\ 6 & 0 & 12 \\ 2 & 1 & 7 \end{array}\right) \sim \left(\begin{array}{cc|c} 1 & 0 & 2 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \end{array}\right)$$

Por lo tanto, $[x]_B = (2, 3)$.

Ejemplo (...continuación)

La siguiente figura muestra cómo x es igual a 2v₁ + 3v₂



Teorema

Las coordenadas de un vector dado con respecto a una base dada son únicas

Demostración

Asumimos que no son únicas. Entonces, debe haber dos conjuntos diferentes de coordenadas tales que:

$$\mathbf{x} = c_1 \mathbf{b}_1 + c_2 \mathbf{b}_2 + \dots + c_p \mathbf{b}_p$$

$$\mathbf{x} = c_1' \mathbf{b}_1 + c_2' \mathbf{b}_2 + \dots + c_p' \mathbf{b}_p$$

Si restamos ambas ecuaciones, tenemos:

$$\mathbf{0} = (c_1 - c_1')\mathbf{b}_1 + (c_2 - c_2')\mathbf{b}_2 + \dots + (c_p - c_p')\mathbf{b}_p$$

Pero dado que la base es un conjunto de vectores linealmente independientes, debe ser:

$$(c_1 - c_1') = 0 \Rightarrow c_1 = c_1'$$
; $(c_2 - c_2') = 0 \Rightarrow c_2 = c_2'$; ...; $(c_p - c_p') = 0 \Rightarrow c_p = c_p'$

Esto es una contradicción con la hipótesis de que hubiera 2 conjuntos diferentes de coordenadas y, por lo tanto, las coordenadas de un vector x deben ser únicas

Dimensión de un subespacio

Isomorfismo de \mathbb{R}^p

Para cualquier subespacio H y su correspondiente base B, el mapping

$$T: H \rightarrow \mathbb{R}^p$$
 $\mathbf{x} \rightarrow [\mathbf{x}]_B$

es una transformación lineal inyectiva, que hace comportarse a H como \mathbb{R}^p

Definición: Dimensión

La **dimensión de un subespacio** H ($\dim\{H\}$) es el número de vectores de cualquiera de sus bases.

La dimensión de $H = \{ 0 \}$ es 0.

Ejemplo (...continuación)

En el ejemplo anterior en el cual $B = \{ v_1, v_2 \}$, la dimensión es 2. De hecho, H se comporta como un plano (ver figura previa en el ejemplo)

Rango de una matriz

Definición: Rango de una matriz

El rango de una matriz A es rank $\{A\}$ = dim $\{Col\{A\}\}$, esto es, la dimensión del espacio columna de la matriz **Octave**

rank(A)

Teorema

El rango de una matriz es el número de columnas pivote que tiene

Demostración

Dado que las columnas pivote forman una base del espacio columna de A, el número de columnas pivote es el rango de la matriz

Ejemplo

$$A = \begin{pmatrix} 1 & 3 & 3 & 2 & -9 \\ -2 & -2 & 2 & -8 & 2 \\ 2 & 3 & 0 & 7 & 1 \\ 3 & 4 & -1 & 11 & -8 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & -3 & 5 & 0 \\ 0 & 1 & 2 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$
Por lo tanto, el rango de A es 3 .

Rango de una matriz

Teorema del Rango

Si A tiene n columnas, entonces $Rank\{A\} + dim\{Nul\{A\}\} = n$

Teorema de la Base

Sea *H* un subespacio de dimensión *p*. Cualquier conjunto linealmente independiente de *p* vectores de *H* es una base de *H*. Cualquier conjunto de *p* vectores que genere *H* es una base de *H*.

Caracterización de las matrices invertibles

Teorema de la Matriz Invertible (...extensión)

Sea $A \in \mathcal{M}_{n \times n}$. Las siguientes afirmaciones son equivalentes (o todas son ciertas o todas falsas):

```
xiii. Las columnas de A forman una base de \mathbb{R}^n
```

```
xiv. Col\{A\} = \mathbb{R}^n
```

xv.
$$\dim\{\operatorname{Col}\{A\}\} = n$$

xvi. Rank
$$\{A\} = n$$

xvii.
$$Nul{A} = {\bf 0}$$

xviii.
$$dim\{ Nul\{A\} \} = 0$$

Ejercicios

- Tema 3_Enunciados de ejercicios VIII
 - Ejercicio 2.9.1
 - Ejercicio 2.9.3
 - Ejercicio 2.9.9
 - Ejercicio 2.9.19
 - Ejercicio 2.9.27

